The half Heusler system Ti1+xFe1.33-xSb-TiCoSb with Sb/Sn substitution: phase relations, crystal structures and thermoelectric properties.

نویسندگان

  • A Tavassoli
  • A Grytsiv
  • G Rogl
  • V V Romaka
  • H Michor
  • M Reissner
  • E Bauer
  • M Zehetbauer
  • P Rogl
چکیده

Investigations of phase relations in the ternary system Ti-Fe-Sb show that the single-phase region of the Heusler phase is significantly shifted from stoichiometric TiFeSb (reported previously in the literature) to the Fe-rich composition TiFe1.33Sb. This compound also exhibits Fe/Ti substitution according to Ti1+xFe1.33-xSb (-0.17 ≤ x ≤ 0.25 at 800 °C). Its stability, crystal symmetry and site preference were established by using X-ray powder techniques and were backed by DFT calculations. The ab initio modeling revealed TiFe1.375Sb to be the most stable composition and established the mechanisms behind Fe/Ti substitution for the region Ti1+xFe1.33-xSb, and of the Fe/Co substitution within the isopleth TiFe1.33Sb-TiCoSb. The calculated residual resistivity of Ti1+xFe1.33-xSb, as well as of the isopleths TiFe1.33Sb-TiCoSb, TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.33Co0.75Sb-TiCoSb0.75Sn0.25, are in a good correlation with the experimental data. From magnetic measurements and 57Fe Mössbauer spectrometry, a paramagnetic behavior down to 4.2 K was observed for TiFe1.33Sb, with a paramagnetic Curie-Weiss temperature of -8 K and an effective moment of 1.11μB per Fe. Thermoelectric (TE) properties were obtained for the four isopleths Ti1+xFe1.33-xSb, TiFe1.33Sb-TiCoSb, TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.29Co0.78Sb-TiCoSb0.75Sn0.25 by measurements of electrical resistivity (ρ), Seebeck coefficient (S) and thermal conductivity (λ) at temperatures from 300 K to 823 K allowing the calculation of the dimensionless figure of merit (ZT). Although p-type Ti1+xFe1.33-xSb indicates a semi-conducting behavior for the Fe rich composition (x = -0.133), the conductivity changes to a metallic type with increasing Ti content. The highest ZT = 0.3 at 800 K was found for the composition TiFe1.33Sb. The TE performance also increases with Fe/Co substitution and reaches ZT = 0.42 for TiCo0.5Fe0.665Sb. No further increase of the TE performance was observed for the Sb/Sn substituted compounds within the sections TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.33Co0.75Sb-TiCoSb0.75Sn0.25. However, ZT-values could be enhanced by about 12% via the optimization of the preparation route (ball-mill conditions and heat treatments).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invitation to the public defense of the doctoral thesis Nanostructured Sb-based Half-Heusler alloys (p-type): Phase equilibria, thermoelectric properties at low and high temperature, and mechanical properties

In search of new highly efficient and mechanically robust thermoelectric materials, the investigations of this thesis focused on the phase structure, the thermoelectric efficiency (“figure of merit” ZT), and mechanical properties of two p-type Half-Heusler (HH) alloys, i.e. several TiFeSb alloys with Ti/Fe, Fe/Co and Sb/Sn substitutions, and a series of NbFeSb alloys doped in the Nb site with g...

متن کامل

Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1ÀxSbx

Half-Heusler alloys ~MgAgAs type! with the general formula MNiSn where M is a group IV transition metal ~Hf, Zr, or Ti! are currently under investigation for potential thermoelectric materials. These materials exhibit a high negative thermopower (240 to 2250 mV/K) and low electrical resistivity values ~0.1–8 mV cm! both of which are necessary for a potential thermoelectric material. Results are...

متن کامل

Structure and Failure Mechanism of the Thermoelectric CoSb3/TiCoSb Interface.

The brittle behavior and low strength of CoSb3/TiCoSb interface are serious issues concerning the engineering applications of CoSb3 based or CoSb3/TiCoSb segmented thermoelectric devices. To illustrate the failure mechanism of the CoSb3/TiCoSb interface, we apply density functional theory to investigate the interfacial behavior and examine the response during tensile deformations. We find that ...

متن کامل

Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys

Half-Heusler alloys with the general formula TiNiSn12xSbx are currently being investigated for their potential as thermoelectric ~TE! materials. A systematic investigation of the effect of Sb doping on the Sn site and Zr doping on the Ti site on the electrical and thermal transport of the TiNiSn system has been performed. Unexpectedly, lattice thermal conductivity kL appears to increase somewha...

متن کامل

Synthesis and Thermoelectric Properties of Ni-Doped ZrCoSb Half-Heusler Compounds

The Ni-doped ZrCo1−xNixSb half-Heusler compounds were prepared by arc-melting and spark plasma sintering technology. X-ray diffraction analysis results showed that all samples were crystallized in a half-Heusler phase. Thermoelectric properties of ZrCo1−xNixSb compounds were measured from room temperature to 850 K. The electrical conductivity and the absolute value of Seebeck coefficient increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2018